
hTag: A Label-Based Extension for Hierarchical File Systems
James Kasten and Randy Yao

University of Michigan

Abstract

Background and Motivation

The traditional hierarchical file system is insufficient for meeting the

behavioral needs of the typical user. As a result, non-hierarchical

systems have been proposed. However, existing software, familiar

habits, and various miscellaneous cases suggest that transitioning

to a fully non-hierarchical model could prove disastrous. In this

paper, we propose hTag, a simple and flexible label and tagging

extension that sits on top of the existing hierarchical file system.

hTag provides a system in which users can define labels with which

files may be tagged while preserving the expected behavior of the

native host file system. In doing so, we aim to provide an extension

that seamlessly deploys into existing systems, providing users with

the easy organizational benefits of a search and index driven model,

while maintaining all of the benefits of their existing system.

Furthermore, we demonstrate that this can be accomplished with a

minimal footprint on disk and performance by careful bookkeeping

and linking.

Implementation User Interface

Upon right-clicking a file

the user is presented with

the option to add and

remove tags

Evaluation

The remove tags option

allows the user to quickly

select and detach any

undesired labels

The user can label the file

with multiple tags at once

In addition to the graphical user interface , hTag provides several

command line scripts to make tagging, interacting and maintaining the

system easy. As an example, hTag allows users to search list all files

associated with a label with the lstag script, which can be written as a

simple two-line wrapper to the ls utility.

hTag utilizes Linux’s inotify to watch for new files

written to disk. The tagManager Python script

keeps track of user-defined filters and adds the

appropriate label to the file on a pattern match.

hTag watches for files deleted in the specified

directories in order to clean up any links in the

label index. This ensures no links to files are

left behind after deletion.

The hTag labeling system rests on top of a traditional hierarchical file system. The labels are

represented as directories in the label index and all associated files have links within the directory.

Index A

B

C

Z

…

Assignments

Audio

Paper.doc

speech.wav

speech.wav

Data.txt

In order to facilitate better performance

when looking up a file’s associated labels.

hTag stores a reverse index in plain text

document. This makes the cleanup

caused by file deletions quick and

efficient.

Paper.doc.tags

Assignments

Class

WinterSemester

Users have been upgrading their hard drives with larger hard disks

and storing more and more files in their systems. Previous work has

argued that this trend has made hierarchical systems unfit for

modern usage. It has been suggested that systems move towards a

file systems that place more emphasis on indexing and

searching. In an age where we search for everything in our web

applications, this seems to be an appropriate claim.

Techniques to provide better search capabilities in FS

• Database on Hierarchical File System

• Too slow – lots of memory references

• Requires configuration which is too difficult for normal users

• Search tools built on hierarchical file system - (Ex. Spotlight)

• Relies on known file types and info within the file

• No additional input from user regarding context

• File system built on database

• Not backwards compatible

• Poor performance for particular workloads

• Proposed Index based tagged file system – Seltzer

• Difficulty in maintaining backwards compatibility

• Lose oftentimes beneficial hierarchical system

• hTag

• Easy adoption

• Data type independent

• All the search benefits of a tagged file system

• Allows both automated and user controlled labeling

We present hTag, a file system extension that aims to provide the

benefits of a pure index based tag file system while also maintaining

the benefits of hierarchical systems.

Recently, file systems on commodity machines have incorporated

features tailored towards improved search and file

retrieval. Examples include Apple’s Spotlight tool, Google’s Google

Desktop, Microsoft’s Windows Search, and Beagle for Linux. All of

these tools provide an indexing system to facilitate desktop search

of user data. These (and similar tools) have worked their way into

the mainstay of our typical user experience, but are still often

insufficient in addressing the problem of file organization.

These tools all rely on data contained within the file. hTag differs

from this previous work by using a data type independent approach

and featuring a user controlled tagging system. By allowing the user

to create their own labels for files, our system can take advantage of

additional context unavailable to the preexisting systems. This

allows hTag users to label files appropriately even when the label is

not located anywhere in the file itself.

Our goal with hTag is to provide a system that explores an

alternative approach to tagging and search that has an intuitive

organization. hTag takes advantage of both the usability of tag-

based systems while addressing several shortcomings of non-

hierarchical system by maintaining full backwards compatibility.

Ideas of non-hierarchical file systems have been explored. Among

the most notable of these is presented by Seltzer and Murphy in

“Hierarchical File Systems are Dead.” In their paper, Seltzer and

Murphy proposed a tagged, search-based file system that aims to

best match user behavior that relies entirely on searching for files.

However, there are several shortcomings to this approach:

backwards compatibility is difficult to maintain, a lack of data

agnosticism, and a lack of direct access to data.

Previous attempts at nontraditional models have expressed concerns in

backwards compatibility and data agnosticism. We address these very

easily with the fact that we’re building entirely on top of a hierarchical system.

We conducted a test showing the total performance cost when we create

many files and have hTag’s filter catch and tag every file with one tag.

Although there is a performance penalty, we argue that it is unnoticeable in

everyday use especially on multicore computers.

Files 10 50 100 200 500

No File Hooks 0.025 0.063 0.132 0.328 0.913

with TagManager 0.033 0.068 0.124 0.244 0.554

Cost of File Creations w/ two cores

The total disk usage is minimal. Even with a somewhat unrealistic volume

of 50,000 file tags, our system only takes an additional 14.15MB on disk.

Tags 1000 5000 10000 20000 50000

Disk usage (MB) 0.3 1.4 2.83 5.65 14.15

Disk usage

The only other overhead the system incurs is during file renaming. Similar to the other events,

hTag is notified when a file is renamed and all the file’s tag links are updated appropriately.

Files 10 50 100 200 500

No File Hooks 0.032 0.086 0.128 0.204 0.446

with TagManager 0.056 0.147 0.255 0.457 1.089

Cost of File Creations w/ single core

